正方体体积教学设计

时间:2025-06-29 18:06:23
正方体体积教学设计

正方体体积教学设计

作为一名教学工作者,很有必要精心设计一份教学设计,教学设计是一个系统化规划教学系统的过程。一份好的教学设计是什么样子的呢?以下是小编收集整理的正方体体积教学设计,仅供参考,大家一起来看看吧。

正方体体积教学设计1

教学目标

1.1知识与技能:

使学生学会计算长方体和正方体的体积,并能利用公式正确进行计算。

1.2过程与方法:

在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。

1.3情感态度与价值观:

使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。

教学重难点

2教学重点:

2.1掌握长、正方体体积的计算方法,解决实际问题。

2.2教学难点:

长、正方体体积公式的推导过程

教学工具

教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)每组24个边长1立方厘米的小木块

教学过程

一、复习引入

1、下列长方体的长、宽、高各是多少:

长:8厘米长:6分米长:8厘米长:12米

宽:4厘米宽:2.5分米宽:4厘米宽:10米

高:5厘米高:10分米高:4厘米高:1.5米

2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?

3、怎样知道这个长方体的体积是多少呢?

今天我们就一起来学习长方体和正方体的体积。(板书:长方体和正方体的体积)

二、新知探究

1、长方体的体积。

(1)活动一:

师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):

A、四人小组合作用12个小正方体摆形状不同的长方体;

B、每摆出一种请在学习单上做好记录,然后再摆下一种;

C、摆完后想想你发现了什么,在四人小组内交流;

D、每组选出一位代表进行汇报。

生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:

师:观察表格,你发现了什么?

引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。

板书:体积=每行个数×行数×层数

师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)

你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)

(2)活动二:

师:四人小组合作,你们能摆出一个体积更大的长方体吗?

预设:长5厘米,宽5厘米,高4厘米。

师:你发现了什么?每排个数、排数、层数相当于长方体的什么?

生:长宽高,因为每一个小正方体的.棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。

2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。

(2)观察上面个部分之间的关系,可以得出:

第一个:5=5×1×1

第二个:15=5×3×1

第三个:12=3×2×2

通过上面的关系式,可以得出:长方体的体积=长×宽×高

如果用字母V表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:V=a×b×c。

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

3、正方体的体积。

因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长

如果用字母V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:V=a·a·a。

a·a·a也可以写作a ?,读作“a的立方”,表示3个a相乘。

正方体的体积计算公式一般写成V=a3。

三、巩固提升

1、计算下面图形的体积。

V=abh=7×3×3=63(cm?)

V=a3=4×4×4=64(cm)

2、求下列长方体的体积。

8×4×5=160(cm3) 6×2.5×10=15(dm3) 8×4×4=128 (cm3) 1.5×10×12=180(m3)

3、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽是2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh

=2.9×1×14.7

=42.63(m?)

答:这块石碑的体积是42.63立方米。

4、判断正误并说明理由。

(1)0.23=0.2×0.2×0.2。( √ )

(2)5X3=10X。( × )

(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。( × )

( 4 )一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( × )

5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?

48÷8÷4=1.5(分米)

答:它的高是1.5分米。

6、一个长方体的棱长总和是96厘米。它的长10厘米,宽8厘米,它的体积是多少立方厘米?

96÷4=24(厘米) 24-10-8=6(厘米)

10×8×6=480(立方厘米)

答:它的体积是480立方厘米。

7、一个无盖的长方体鱼缸,长8分米,宽6分米,高7分米,制作这个鱼缸共需玻璃多少平方分米?这个鱼缸的体积是多少?

(8×6)+(8×7+6×7)×2=244(平方分米)

8×6×7=336(立方分米)

答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。

课后小结

这节课我们学习了什么?

我们学习了长方体和正方体体积的计算公式。

长方体的体积=长×宽×高,V=a×b×h

正方体的体积=棱长×棱长×棱长,V=a×a×a=a3

板书

长方体和正方体的体积

长方体的体积=长×宽×高 ……此处隐藏10810个字……方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.

正方体体积教学设计11

教学目标:

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

教学重点和难点:

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学过程:

一、复习引入

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的.体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)

(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

三、议一议

长方体和正方体的体积公式有什么相同点?

长方体和正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

如果用S表示底面积,上面的公式可以写成:

V=Sh

四、巩固练习

计算下面图形的体积

板书设计:

正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高

V=a3 V=Sh

《正方体体积教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式