初中数学定理

时间:2025-08-02 08:46:28
初中数学定理大集合【热门】

初中数学定理大集合【热门】

初中数学定理大集合1

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1 通过前面的学习,我们对勾股定理及其逆定理的`知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。 点击范例,以练促思

问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

。因此

,即“海天”号沿西北方向航行。

课堂练习1。 课本33页练习第3题。

课堂练习2。 在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。 补充训练,巩固新知

问题3 实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

4。 反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

A。南北 B。东西 C。东北 D。西北

【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从

港出发,甲船沿北偏东

的方向,以每小时9海里的速度向

岛驶去,乙船沿另一个方向,以每小时12海里的速度向

岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

两岛相距45海里,那么乙船航行的方向是南偏东多少度?

【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知

求这块菜地的面积。

【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

初中数学定理大集合2

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

三角形相似定理

1 相似三角形判定定理1 两角 ……此处隐藏22180个字……p>推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

初中数学定理:角的平分线定理

定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上

角的平分线是到角的两边距离相等的所有点的集合

初中数学定理:等腰三角形性质定理

等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

推论3:等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1:三个角都相等的三角形是等边三角形

推论2有一个角等于60°的等腰三角形是等边三角形

初中数学公式定理:对称定理

定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

定理1:关于某条直线对称的两个图形是全等形

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

初中数学定理:直角三角形定理

定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半

勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

初中数学公式定理:多边形内角和定理

定理:四边形的内角和等于360°

四边形的外角和等于360°

多边形内角和定理:n边形的内角的和等于(n-2)×180°

推论:任意多边的外角和等于360°

初中数学公式定理:平行四边形定理

平行四边形性质定理1:平行四边形的对角相等

平行四边形性质定理2:平行四边形的对边相等

推论:夹在两条平行线间的平行线段相等

平行四边形性质定理3:平行四边形的对角线互相平分

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形

平行四边形判定定理3:对角线互相平分的四边形是平行四边形

平行四边形判定定理4:一组对边平行相等的四边形是平行四边形

初中数学公式定理:矩形的定理

矩形性质定理1:矩形的四个角都是直角

矩形性质定理2:矩形的对角线相等

矩形判定定理1:有三个角是直角的四边形是矩形

矩形判定定理2:对角线相等的平行四边形是矩形

初中数学公式定理:菱形定理

菱形性质定理1:菱形的四条边都相等

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理1:四边都相等的四边形是菱形

菱形判定定理2:对角线互相垂直的平行四边形是菱形

初中数学公式定理:正方形定理

正方形性质定理1:正方形的四个角都是直角,四条边都相等

正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

初中数学定理公式:中心对称定理

定理1:关于中心对称的两个图形是全等的

定理2:关于中心对称的'两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

初中数学定理:等腰梯形性质定理

等腰梯形性质定理:

1.等腰梯形在同一底上的两个角相等

2.等腰梯形的两条对角线相等

等腰梯形判定定理:

1.在同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

初中数学公式定理:中位线定理

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

初中数学公式定理:相似三角形定理

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1:两角对应相等,两三角形相似(ASA)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)

判定定理3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2:相似三角形周长的比等于相似比

性质定理3:相似三角形面积的比等于相似比的平方

初中数学公式定理:三角函数定理

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

初中数学圆的定理

不共线的三点确定一个圆

经过一点可以作无数个圆

经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上定理

经过不共线的三个点,可以作且只可以作一个圆

推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心

三角形的三条高线的交点叫三角形的垂心

垂径定理

《初中数学定理大集合【热门】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式