有关高中数学说课稿模板10篇
作为一名专为他人授业解惑的人民教师,通常需要用到说课稿来辅助教学,写说课稿能有效帮助我们总结和提升讲课技巧。那么说课稿应该怎么写才合适呢?下面是小编整理的高中数学说课稿10篇,欢迎阅读与收藏。
高中数学说课稿 篇1一、教材分析:
1、教材的地位与作用。
本节内容是在学生学习了“事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。”用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。
在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下面学习求比较复杂的情况的概率打下基础。
2、重点与难点。
重点:对概率意义的理解,通过多次重复实验,用频率预测概率的.方法,以及用列举法求概率的方法。
难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。
二、目的分析:
知识与技能:掌握用频率预测概率和用列举法求概率方法。
过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。
情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。
三、教法、学法分析:
引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现“教” 为“学”服务这一宗旨。
四、教学过程分析:
1、引导学生探究
精心设计问题一,学生通过对问题一的探究,一方面复习前面学过的“确定事件和不确定事件”的知识,为学好本节内容理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。
2、归纳概括
学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。
引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题能力,又让学生明确用列举法求概率这一简便快捷方法的合理性。
P(A)= = = (m
3、举例应用
⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。
⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。
深化发展
⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。
⑵让学生设计活动内容,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新能力。
高中数学说课稿 篇2一、教材分析:
"数列"是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。
就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。
二、教学目标:
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。
1、知识目标:
(1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。
(2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。
2、能力目标:
培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。
3、情感目标:
通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。
三、重点、难点:
1、教学重点
理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。
2、教学难点
根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。
四、教法学法
本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。
现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。
"授人以鱼,不如授人以渔",平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。
为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教 ……此处隐藏16741个字……,我制定了以下教学目标:
1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。
2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。
3、培养学生对知识的严谨科学态度和辩证唯物主义观点。
三、教法学法分析
1、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。
2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。
3、学法分析
让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。
四、教学过程
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
学生回答: 与 之间的关系式,可以表示为 。
问题2:折纸问题:让学生动手折纸
学生回答:①对折的次数 与所得的层数 之间的关系,得出结论
②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论
问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。
学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。
设计意图:
(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ②
(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接
受指数函数的'形式。
(二)导入新课
引导学生观察,三个函数中,底数是常数,指数是自变量。
设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授
1.指数函数的定义
一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。
含义:
设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:
问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?
设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在)
(2)若 会有什么问题?(对于 , 都无意义)
(3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定 。
在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
2:若函数 是指数函数,则
3:已知 是指数函数,且 ,求函数 的解析式。
设计意图 :加深学生对指数函数定义和呈现形式的理解。
2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线
思考如何列表取值?
教师与学生共同作出 图像。
设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
师生共同总结指数函数的性质,教师边总结边板书。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
(四)巩固与练习
例1: 比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
(5)题底不同,指数相同,可以利用函数的图像比较大小。
(6)题底不同,指数也不同,可以借助中介值比较大小。
例2:已知下列不等式 , 比较 的大小 :
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
通过本节课的学习,你学到了哪些知识?
你又掌握了哪些数学思想方法?
你能将指数函数的学习与实际生活联系起来吗?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。
(六)布置作业
1、练习B组第2题;习题3-1A组第3题
2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
3、观察指数函数 的图象,比较 的大小。
文档为doc格式