高中数学说课稿

时间:2025-09-19 06:54:19
有关高中数学说课稿6篇

有关高中数学说课稿6篇

作为一位杰出的教职工,可能需要进行说课稿编写工作,编写说课稿助于积累教学经验,不断提高教学质量。那么什么样的说课稿才是好的呢?下面是小编帮大家整理的高中数学说课稿6篇,希望对大家有所帮助。

高中数学说课稿 篇1

一.内容和内容分析

“函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。

二.目标和目标分析

(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的`概念,学会利用定义判断

简单函数的奇偶性。

(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊

到一般的数学思想方法.

(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。

三.教学问题诊断分析

导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。

四.教学支持条件分析

用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。

五.教学过程设计

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:

1.设疑导入、观图激趣:

使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。

2.指导观察、形成概念:

作出函数y=x的图象,并观察这两个函数图象的对称性如何?

借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2

偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。

3.学生探索、发展思维。

接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:

(1)求出函数的定义域,并判断是否关于原点对称

(2)验证f(-x)=f(x)或f(-x)=-f(x)

(3)得出结论

由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。

4.布置作业:

六.目标检测设计

学案上的题型主要包括奇偶性函数的判断及应用

七.教学反思:(从两方面)

1.思成功

一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,

听别人怎样介绍,也学到了知识.

2.思不足

学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用

学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。

语言组织:

在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。

教学环节(的完整):

在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。

以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。

高中数学说课稿 篇2

尊敬的各位专家、评委:

下午好!

我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4) 学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象 ……此处隐藏7868个字……圆的方程是,经过圆上一点的切线的方程是什么?

我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

III。实际应用 回归自然

问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

好学教育:

我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

(四)反馈训练——形成方法

问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。

2。求圆过点的切线方程。

3。求圆过点的切线方程。

接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

(五)小结反思——拓展引申

1。课堂小结

把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

圆心在原点时,半径为r 的圆的标准方程为:。

②已知圆的方程是,经过圆上一点的切线的方程是:。

2。分层作业

(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

3。激发新疑

问题七 1。把圆的标准方程展开后是什么形式?

2。方程表示什么图形?

在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

(一)突出重点 抓住关键 突破难点

好学教育:

求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

(二)学生主体 教师主导 探究主线

本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

(三)培养思维 提升能力 激励创新

为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

高中数学说课稿 篇6

高中数学第三册(选修)Ⅱ第一章第2节第一课时

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的`离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

五、教学的基本流程设计

高中数学第三册《离散型随机变量的期望》说课教案.rar

《有关高中数学说课稿6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式